博客
关于我
chapter.数据清洗1.2
阅读量:517 次
发布时间:2019-03-07

本文共 2318 字,大约阅读时间需要 7 分钟。

1.3填充缺失值

当数据量不够或者其他部分信息很重要的时候,就不能删除数据了,这时需要对缺失值进行填充,通过fillna方法可以将缺失值替换为常数值。
例:

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)

在这里插入图片描述

使用fillna方法填充

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna(0)#全部填充为0

在这里插入图片描述

当然在fillna中传入字典结构数据,可以针对不同列填充不同的值,fillna返回的是新对象,不会对原数据进行修改,可通过inplace就地进行修改。
例:

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna({   1:6,3:0})

在这里插入图片描述

还可以通过平均值来作为填充数

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna(method='ffill')

在这里插入图片描述

2.移除重复数据
在爬取的数据中往往会出现重复数据,对于重复数据保留一份即可,其余可以移除,在DataFrame数据中,通过duplicated方法判断各行是否有重复数据。

data=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})
import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.duplicated()

在这里插入图片描述

通过drop_duplicates方法,可以删除多余的重复项

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.drop_duplicates()

在这里插入图片描述

很显然这种情况下当每行的每个字段都相同时才会判断出为重复,这时可以通过指定部分作为判断重复项的依据。

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.drop_duplicates('年龄')

在这里插入图片描述

从结果可以看出,保留的数据为第一次出现的组合。传入keep=‘last’可以保留最后一个。

转载地址:http://hrynz.baihongyu.com/

你可能感兴趣的文章
MySQL8修改密码报错ERROR 1819 (HY000): Your password does not satisfy the current policy requirements
查看>>
MySQL8修改密码的方法
查看>>
Mysql8在Centos上安装后忘记root密码如何重新设置
查看>>
Mysql8在Windows上离线安装时忘记root密码
查看>>
MySQL8找不到my.ini配置文件以及报sql_mode=only_full_group_by解决方案
查看>>
mysql8的安装与卸载
查看>>
MySQL8,体验不一样的安装方式!
查看>>
MySQL: Host '127.0.0.1' is not allowed to connect to this MySQL server
查看>>
Mysql: 对换(替换)两条记录的同一个字段值
查看>>
mysql:Can‘t connect to local MySQL server through socket ‘/var/run/mysqld/mysqld.sock‘解决方法
查看>>
MYSQL:基础——3N范式的表结构设计
查看>>
MYSQL:基础——触发器
查看>>
Mysql:连接报错“closing inbound before receiving peer‘s close_notify”
查看>>
mysqlbinlog报错unknown variable ‘default-character-set=utf8mb4‘
查看>>
mysqldump 参数--lock-tables浅析
查看>>
mysqldump 导出中文乱码
查看>>
mysqldump 导出数据库中每张表的前n条
查看>>
mysqldump: Got error: 1044: Access denied for user ‘xx’@’xx’ to database ‘xx’ when using LOCK TABLES
查看>>
Mysqldump参数大全(参数来源于mysql5.5.19源码)
查看>>
mysqldump备份时忽略某些表
查看>>